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The influence of short-range Coulomb correlations on the Mott transition in the single-band Hubbard model
at half filling is studied within cellular dynamical mean-field theory for square and triangular lattices. Finite-
temperature exact diagonalization is used to investigate correlations within two-, three-, and four-site clusters.
Transforming the nonlocal self-energy from a site basis to a molecular-orbital basis, we focus on the interor-
bital charge transfer between these cluster molecular orbitals in the vicinity of the Mott transition. In all cases
studied, the charge transfer is found to be small, indicating weak Coulomb-induced orbital polarization despite
sizable level splitting between orbitals. These results demonstrate that all cluster molecular orbitals take part in
the Mott transition and that the insulating gap opens simultaneously across the entire Fermi surface. Thus, at
half filling we do not find orbital-selective Mott transitions or a combination of band filling and Mott transition
in different orbitals. Nevertheless, the approach toward the transition differs greatly between cluster orbitals,
giving rise to a pronounced momentum variation along the Fermi surface, in agreement with previous works.
The near absence of Coulomb-induced orbital polarization in these clusters differs qualitatively from single-site
multiorbital studies of several transition-metal oxides, where the Mott phase exhibits nearly complete orbital
polarization as a result of a correlation driven enhancement of the crystal-field splitting. The strong single-
particle coupling among cluster orbitals in the single-band case is identified as the source of this difference.
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I. INTRODUCTION

Considerable progress has recently been achieved in the
understanding of the Mott transition in a variety of
transition-metal oxides.1 Whereas density functional theory
in the local density approximation �LDA� predicts many of
these materials to be metallic, the explicit treatment of local
Coulomb interactions via dynamical mean-field theory
�DMFT� �Ref. 2� correctly yields insulating behavior for re-
alistic values of the on-site Coulomb energy U. In the metal-
lic phase, the noncubic structure of some of these systems
gives rise to nonequivalent, partially filled subbands that are
split by a crystal field and exhibit orbital-dependent electron
occupancies. The hallmark of the Mott transition of these
oxides is that orbital polarization can be greatly increased by
Coulomb correlations and that the insulating phase is nearly
completely orbitally polarized. For instance, in the case of
LaTiO3, the eg� bands are pushed above the Fermi level and
the remaining singly-occupied ag subband is split into lower
and upper Hubbard bands.3,4 In the case of V2O3, Coulomb
correlations push the ag band above the Fermi level, and the
doubly-degenerate eg� subbands exhibit a Mott gap.5,6 Also, in
the insulating phase of Ca2RuO4, the dxy-like band is com-
pletely filled, and the dxz,yz-like subbands are split into Hub-
bard bands.7,8 The common feature of the Mott transition in
these materials is that the effective band degeneracy is re-
duced from three to two or one so that the critical Coulomb
energy is lower than it would be if the t2g bands were fully
degenerate. On the other hand, other materials can exhibit a
quite different behavior. For instance, orbital polarization in
BaVS3 was shown to decrease with increasing local Cou-
lomb interaction.9 Also, the Mott transition in LaVO3 and

YVO3 occurs before orbital polarization is complete.10

Moreover, in a hypothetical tetragonal structure of LaTiO3,
relevant for heterostructures, the Mott phase is reached when
nxz,yz approaches 1/4 and nxy vanishes.11 Finally, the possibil-
ity of so-called orbital-selective Mott transitions in multi-
band systems has been discussed extensively in the
literature.7,12–16 These different trends underline the remark-
ably rich physics of Mott transitions in multiorbital materi-
als.

The aim of this work is to investigate the relationship
between Coulomb correlations in single-site multiorbital sys-
tems as described above to those occurring within a single
band when intersite Coulomb correlations are taken into ac-
count. The influence of short-range correlations on the nature
of the Mott transition is currently of great interest and has
been studied by many groups.17–51 Here we examine the role
of correlation-driven orbital polarization in the vicinity of the
Mott transition. For example, it is well known that in a mini-
mal two-site cluster model,47 which permits explicit treat-
ment of short-range Coulomb correlations in an isotropic
square lattice, the Green’s function and self-energy become
diagonal if one transforms the site basis to a diagonal
bonding-antibonding molecular orbital basis. In a four-site
cluster model, diagonality is obtained by transforming sites
to cluster molecular orbitals characterized by �= �0,0�, X
= �� ,0� , �0,��, and M = �� ,��.44 The molecular-orbital com-
ponents of the self-energy provide qualitative information on
the importance of correlations in the corresponding sections
of the Brillouin Zone. In the case of an isotropic triangular
lattice, Green’s function and self-energy can be diagonalized
by an analogous transformation to molecular orbitals appro-
priate for a three-site cluster.45 The question then arises
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whether these cluster molecular orbitals in the single-band
case obey a similar scenario as the multiorbital systems men-
tioned above.

Since an approximate momentum variation in the lattice
self-energy in these models can be derived from a linear
superposition of the respective molecular-orbital components
of the cluster self-energy, the effect of correlation-enhanced
orbital polarization is of direct relevance for the question of
whether the Mott gap opens uniformly across the Fermi sur-
face, or whether it opens first in certain regions of the Bril-
louin Zone �e.g., near the so-called hot spots� and only at
larger U in the remaining regions �the so-called cold spots�.
The latter picture would be analogous to the orbital-selective
Mott transition, which can occur within single-site DMFT
treatments of certain multiband systems.7,12–16 Another pos-
sibility, analogous to multiorbital materials such as LaTiO3,
V2O3, and Ca2RuO4, is that a subset of cluster orbitals could
exhibit a genuine Mott transition, while the remaining ones
are pushed above or below the Fermi level at about the same
critical U.

To account for intersite correlations we use DMFT com-
bined with finite-temperature exact diagonalization �ED�.52 It
was recently shown53 that this method can be generalized to
multiband materials by computing only those excited states
of the impurity Hamiltonian that are within a narrow range
above the ground state, where the Boltzmann factor provides
the convergence criterion. Exploiting the sparseness of the
Hamiltonian, these states can be computed very efficiently
by using the Arnoldi algorithm.54 Higher excited states enter
via Green’s functions, which are evaluated using the Lanczos
method. This approach has proved to be highly useful for the
study of strong correlations in several transition-metal
oxides.4,11,53,55,56 An important feature of ED/DMFT is that
low temperatures and large Coulomb energies can be
reached. The adaptation of single-site multiorbital ED to
multisite single-band systems is discussed in detail below. In
particular, we introduce a mixed site-molecular-orbital basis,
which permits a more flexible and more accurate projection
of the lattice Green’s function onto the cluster than in a pure
site representation. Previous multisite ED/DMFT studies fo-
cused on T=0.29,35,37–41 The extension to finite T discussed
here is especially useful for the evaluation of the T /U phase
diagram.

The main result of this work is that in all cluster models
studied here for half-filled square and triangular lattices,
there is little enhancement of orbital polarization in the vi-
cinity of the Mott transition. Thus, despite sizable level split-
ting between these cluster orbitals, they all exhibit Mott gaps
at the same critical Coulomb energy. As a consequence, the
Mott gap in these models opens uniformly across the Fermi
surface. For the square lattice we show explicitly that the
Mott gap at the cold spot M /2= �� /2,� /2� of the Brillouin
Zone is driven by Coulomb correlations at the hot spot X
= �� ,0�. Therefore, there is no orbital-selective Mott transi-
tion. Moreover, there is no evidence for the combination of
partial band filling and Mott transition in remaining sub-
bands that is characteristic of single-site DMFT treatments of
the multiorbital materials LaTiO3, V2O3, and Ca2RuO4, as
mentioned above.

The outline of this paper is as follows. Section II dis-
cusses the theoretical aspects of our cluster ED/DMFT

implementation of finite-temperature exact diagonalization.
Section III provides the results for the two-site and four-site
clusters of the square lattice, and the three-site cluster of the
isotropic triangular lattice. In Sec. IV we briefly discuss
analogies and differences between these multisite correlation
effects and those investigated previously in single-site
DMFT treatments of multiorbital materials. The conclusions
are presented in Sec. V.

II. MULTISITE ED/DMFT

Let us consider the single-band Hubbard model

H = − t �
�ij��

�ci�
+ cj� + H . c .� + U�

i

ni↑ni↓, �1�

where the sum in the first term extends over nearest-neighbor
sites. The hopping integral t will be set equal to unity
throughout this paper. Thus, the band widths of the square
and triangular lattices are W=8 and W=9, respectively.
Within cellular dynamical mean-field theory �CDMFT�
�Refs. 25 and 36� the interacting lattice Green’s function in
the cluster site basis is given by

Gij�i�n� = �
k�

�i�n + � − t�k�� − ��i�n��ij
−1, �2�

where the k� sum extends over the reduced Brillouin Zone,
�n= �2n+1��kBT are Matsubara frequencies, and � is the
chemical potential. The lattice constant is unity. t�k�� denotes
the hopping matrix for the superlattice and ��i�n� represents
the cluster self-energy matrix. To make contact to other
recent works,32,41,44,46,47 we consider here the paramagnetic
metal-insulator transition.

In the site basis, the Green’s functions for two-site, three-
site, and four-site clusters have the structure

G�2� = �a b

b a
	 , �3�

G�3� = 
a b b

b a b

b b a
� , �4�

G�4� =

a b b c

b a c b

b c a b

c b b a
� �5�

with a=G11, b=G12, and c=G14. Site labels in the square
lattice refer to 1��0,0�, 2��1,0�, 3��0,1�, and 4
��1,1�, and in the triangular lattice to 1��0,0�, 2��1,0�,
and 3��1 /2,3 /2�. The superscript denotes the cluster size
nc in the square lattice �nc=2 or nc=4� or triangular lattice
�nc=3�, respectively. In the site bases, the corresponding
self-energy matrices ��nc��i�n� have the same symmetry
properties as the Green’s functions.

A key aspect of DMFT is that, to avoid double counting
of Coulomb interactions in the quantum impurity calculation,

LIEBSCH, ISHIDA, AND MERINO PHYSICAL REVIEW B 78, 165123 �2008�

165123-2



it is necessary to remove the self-energy from the cluster in
which correlations are treated exactly. This removal yields
the Green’s function

G0�i�n� = �G�i�n�−1 + ��i�n��−1. �6�

These matrices also exhibit the symmetry properties speci-
fied above.

For the purpose of the ED calculations it is convenient to
transform the site bases into molecular-orbital bases in which
the Green’s functions and self-energies become diagonal. For
the two-site cluster, molecular orbitals are given by the
bonding-antibonding combinations �1,2= ��1�	 �2�� /2. For
the four-site cluster, they are formed by the plaquettes �1
= ��1�+ �2�+ �3�+ �4�� /2, �2= ��1�+ �2�− �3�− �4�� /2, �3= ��1�
− �2�+ �3�− �4�� /2, and �4= ��1�− �2�− �3�+ �4�� /2. Finally, for
the three-site cluster of the triangular lattice they can be writ-
ten as: �1= ��1�+ �2�+ �3�� /3, �2= �−2�1�+ �2�+ �3�� /6, and
�3= ��2�− �3�� /2. In these cluster molecular-orbital bases,
the above Green’s functions take the form

G�2� = �a + b 0

0 a − b
	 , �7�

G�3� = 
a + 2b 0 0

0 a − b 0

0 0 a − b
� , �8�

G�4� =

a + 2b + c 0 0 0

0 a − c 0 0

0 0 a − c b

0 0 0 a − 2b + c
� . �9�

The self-energies ��i�n� and Green’s functions G0�i�n� can
be diagonalized in the same fashion. We denote these ele-
ments as Gm�i�n�, �m�i�n�, and G0,m�i�n�.

In the site basis, the local density of states in the nonin-
teracting limit is given by


ii��� = −
1

�
Im Gii��� �10�

with �=0. Since we consider isotropic clusters, all sites are
equivalent so that 
ii��� coincides with the density of states

���. In the molecular-orbital basis, the density-of-states
components 
m��� have different shapes and different cen-
troids, analogous to the crystal-field-split density-of-states
components of many transition-metal oxides. Figure 1 shows
these densities for the two-site and four-site clusters of the
square lattice and the three-site cluster of the triangular lat-
tice, as described above. According to Eqs. �7�–�9�, the clus-
ter molecular-orbital densities of states are given by


1
�2� = 
11

�2� + 
12
�2�,


2
�2� = 
11

�2� − 
12
�2�, �11�
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FIG. 1. �Color online� Total density of states 
��� and molecular-orbital components 
m��� for two-site and four-site clusters of square
lattice �top panels�, and of three-site cluster of triangular lattice �bottom panel�. For clarity, the molecular-orbital components are divided
by nc.
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1
�3� = 
11

�3� + 2
12
�3�,


2
�3� = 
3

�3� = 
11
�3� − 
12

�3�, �12�


1
�4� = 
11

�4� + 2
12
�4� + 
14

�4�,


2
�4� = 
3

�4� = 
11
�4� − 
14

�4�,


4
�4� = 
11

�4� − 2
12
�4� + 
14

�4�, �13�

where 
ij
�nc� are the site components for cluster nc.

From these cluster molecular-orbital densities of states an
approximate momentum variation across the Brillouin Zone
can be constructed �see below�. For instance, in the case of
the square lattice with nc=4, densities associated with the
high-symmetry points of the original lattice are given by

����=
1���, 
X���=
2���=
3���, and 
M���=
4���. At
M /2= �� /2,� /2�, the density of states corresponds to the
local density 
���=
11���= �
�+
M +2
X� /4. Note, how-
ever, that all molecular-orbital densities extend across the
entire band width. Thus, they are not identical with those
sections of the local density of states that originate in mo-
mentum regions surrounding the high-symmetry points, as
would be the case in the dynamical cluster approximation
�DCA�.20,36

We now project the Green’s function G0�i�n� defined in
Eq. �6� onto a cluster consisting of nc impurity levels and nb
bath levels. The total number of levels is ns=nc+nb. In the
site basis we have

G0�i�n� � G0
cl�i�n� = �i�n + � − h − ��i�n��−1 �14�

where h is the noninteracting impurity cluster Hamiltonian
and ��i�n� is the hybridization matrix describing the cou-
pling between impurity cluster and bath. Thus,

h�2� = ��0 t

t �0
	 , �15�

h�3� = 
�0 t t

t �0 t

t t �0
� , �16�

h�4� =

�0 t t 0

t �0 0 t

t 0 �0 t

0 t t �0

� . �17�

For the square lattice we choose �0=0 and for the triangular
lattice �0=−0.83 so that the Fermi level coincides with �
=0.

Instead of expressing the nondiagonal hybridization ma-
trix ��i�n� in a site basis, it is convenient to go over to the
molecular-orbital basis in which G0�i�n� is diagonal. Assum-
ing that each component G0,m�i�n� couples only with its own
bath, we have

G0,m�i�n� � G0,m
cl �i�n� = �i�n + � − �m − �

k

�Vmk�2

i�n − �k
	−1

,

�18�

where �m represents an impurity level, �k represent the bath
levels, and Vmk represent the hybridization matrix elements.
The incorporation of the impurity level �m ensures a much
better fit of G0,m�i�n� than by projecting only onto bath or-
bitals.

For instance, for nc=3 and ns=12 �i.e., three bath levels
per impurity orbital�, each component G0,m�i�n� is fitted us-
ing seven parameters: one impurity level �m, three bath levels
�k, and three hopping integrals Vmk. Since according to Eq.
�8� there are two independent functions, we use a total of 14
fit parameters to represent these two G0,m components. This
procedure allows for a considerably more flexible projection
of the Green’s function matrix G0�i�n� onto the bath. In a
site basis for an isotropic triangular lattice �taking again three
bath levels per site�, one would have instead only six fit
parameters if each site couples to its own bath. Effectively,
therefore, the molecular-orbital basis accounts for several ad-
ditional cross hybridization terms, as well as internal cluster
couplings �see below�. Moreover, it is much more reliable to
fit the two independent molecular-orbital components
G0,m�i�n� than a nondiagonal site matrix G0,ij�i�n� with an
equivalent number of parameters. Analogous considerations
hold for the two-site and four-site clusters of the square lat-
tice. For example, for nc=4 and ns=12 there are two inde-
pendent functions G0,1 and G0,2 �G0,4 is related to G0,1�, giv-
ing a total of ten fit parameters, compared to only two
parameters in a simple site picture with fourforld and
particle-hole symmetry.

Figure 2 illustrates the typical quality of the projection of
the lattice components of G0,m�i�n� onto the bath for nc=3
and ns=9. Thus, although only two bath levels per orbital are
included �i.e., using five parameters per orbital�, the fit of
both real and imaginary parts is excellent. For these cluster
sizes and low temperatures, iterations take only a few min-
utes. Fits of similar quality are achieved for multiorbital
materials.4,11,53,55,56 To achieve even better agreement at low
frequencies, it is preferable to minimize not the bare differ-
ence G0,m�i�n�−G0,m

cl �i�n� but to divide these functions first
by �n.

We now discuss the evaluation of the finite-temperature
interacting cluster Green’s function. If this step is carried out
in the diagonal molecular-orbital basis, the Coulomb interac-
tion must be expressed as a matrix containing many interor-
bital components. For nc=4 it can be easily shown that
Um1m2m3m4

=U /4 for 64 of the possible 256 configurations.
All other matrix elements vanish. This step can be circum-
vented by working in a mixed basis consisting of cluster sites
i and bath orbitals k. We illustrate this procedure here for the
triangular lattice with nc=3. Let us denote the transformation
between sites and orbitals as T�nc�, where

Tim
�3� = 
1/3 − 2/6 0

1/3 1/6 1/2

1/3 1/6 − 1/2
� . �19�

In this mixed basis, the effective site block of the cluster
Hamiltonian becomes
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h�3� = 
�� t� t�

t� �� t�

t� t� ��
� �20�

with ��=�0+ ��1+2�2� /3 and t�= t+ ��1−�2� /3, where �0 and
t are the elements of the original cluster Hamiltonian defined
in Eq. �16�. The new terms involving the molecular-orbital
cluster levels �m arise from the projection specified in Eq.
�18�. In the mixed basis, the hybridization matrix elements
Vmk between cluster and bath orbitals introduced in Eq. �18�
are transformed to new hybridization matrix elements be-
tween cluster sites i and bath orbitals k. They are given by

Vik� = �T�3�V�ik = �
m

Tim
�3�Vmk. �21�

Using the elements ��, t�, and Vik� , together with the on-
site Coulomb energy U, the nondiagonal interacting cluster
Green’s function at finite temperature is derived from the
expression53,57

Gij
cl�i�n� =

1

Z
�
��

e−E�� ���ci�������cj�
+ ���

E� − E� + i�n

+
���ci�

+ ������cj����
E� − E� + i�n

	 , �22�

where E� and ��� denote the eigenvalues and eigenvec-
tors of the impurity Hamiltonian, and =1 /kBT and Z
=��exp�−E�� is the partition function. At low temperatures
only a relatively small number of excited states in few spin
sectors contributes to Gij

cl. They can be efficiently evaluated
using the Arnoldi algorithm.54 The excited state Green’s
functions are computed using the Lanczos procedure. Further
details can be found in Ref. 53. The nondiagonal elements of
Gij

cl are derived by first evaluating the diagonal components
Gii

cl and then using the relation50

G�i+j��i+j�
cl = Gii

cl + Gij
cl + Gji

cl + Gjj
cl. �23�

Since Gij
cl=Gji

cl, this yields

Gij
cl =

1

2
�G�i+j��i+j�

cl − Gii
cl − Gjj

cl� . �24�

For the two-site cluster, we have used three or four bath
levels for each impurity orbital �ns=8 or 10�, for the three-
site cluster 2 or 3 bath levels per impurity orbital �ns=9 or
12�, and for the four-site cluster 2 bath levels per impurity
orbital �ns=12�. Gij

cl�i�n� obeys the same symmetry proper-
ties as the lattice Green’s functions given in Eqs. �3�–�5�. It
can therefore be diagonalized as indicated in Eqs. �7�–�9�.
We denote these diagonal elements as Gm

cl�i�n�. For nc=4,
we have checked that the evaluations of Gm

cl�i�n� in the non-
diagonal site-orbital basis and in the diagonal molecular-
orbital basis yield identical results.

The key assumption in DMFT is now that the resulting
impurity cluster self-energy is a physically reasonable repre-
sentation of the lattice self-energy. Thus, using a relation
analogous to Eq. �6�, we find

�m
cl�i�n� = 1/G0,m

cl �i�n� − 1/Gm
cl�i�n� � �m�i�n� . �25�

After transforming �m�i�n� back to the nondiagonal site ba-
sis, it is used as input in the lattice Green’s function Eq. �2�
in the next iteration step.

To summarize the procedure discussed above, the multi-
site ED/DMFT calculation consists of the following steps:

�a� evaluate the lattice Green’s function Gij�i�n�, Eq. �2�,
in the nondiagonal site basis using as input the self-energy
obtained in a previous iteration step. The entire iteration pro-
cedure is started at small U with �=0.

�b� transform Gij and �ij to the diagonal molecular-orbital
basis and compute the components G0,m.

�c� project the G0,m�i�n� onto independent baths to deter-
mine �m, �k, and Vmk as indicated in Eq. �18�.

�d� from the fit parameters �m and Vmk determine the
Hamiltonian matrix elements ��, t�, and Vik� in the mixed
site-orbital basis.

�e� evaluate the nondiagonal cluster Green’s function
Gij

cl�i�n� using the Arnoldi and Lanczos methods.
�f� transform this Green’s function to the diagonal orbital

basis and compute the cluster self-energy components
�m

cl�i�n� defined in Eq. �25�.
We emphasize that ED/DMFT involves, at each iteration,

two projections: �1� The lattice Green’s function G0 is pro-
jected onto the cluster Green’s function G0

cl, as indicated in
Eq. �18�. By definition, G0 has a continuous spectrum at real
frequencies, while G0

cl is discrete. �2� The cluster self-energy
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FIG. 2. �Color online� Projection of lattice Green’s function components G0,m�i�n� onto bath for nc=3, U=9, T=0.02. Left panel:
Im G0,m, right panel: Re G0,m. Red curves: lattice Green’s functions, blue curves: approximate expression, right-hand side of Eq. �18�.

MULTISITE VERSUS MULTIORBITAL COULOMB… PHYSICAL REVIEW B 78, 165123 �2008�

165123-5



�cl, which evidently has a discrete spectrum at real �, is used
as an approximation of the lattice self-energy �, which by
definition is continuous along the real frequency axis. Thus,
both projections, G0�G0

cl and �cl��, rely on the well-
known fact that continuous and discrete spectra at real � can
yield nearly identical distributions at Matsubara frequencies.
Since the cluster size determines the number of discrete
spectral features of G0

cl and �cl, there exists evidently an
infinite number of discrete spectra, which may in principle
be used to represent the continuous spectra of the lattice
quantities G0 and �.

III. RESULTS AND DISCUSSION

Figure 3 shows the occupancies of the cluster molecular
orbitals for three cluster sizes as functions of increasing U.
For the square lattice the Mott transition occurs near Uc2
�5.5, while for the triangular lattice it occurs near Uc2
�9.5 �see below�. Evidently all orbital occupancies vary
smoothly across the transition. There is no indication of
orbital-selective Mott transitions or for complete filling or
emptying of any orbitals at large Coulomb energies. This
behavior differs qualitatively from the one found in materials
such as LaTiO3, V2O3, and Ca2RuO4, where the insulating
phase exhibits nearly complete orbital polarization as a result
of a Coulomb driven enhancement of the crystal-field split-
ting between t2g orbitals3–8 �see following section�.

The fact that all cluster orbitals remain partially occupied
across the transition implies that the gap opens simulta-
neously in all orbitals. This can be seen most clearly in the
spectral distributions, as shown in Fig. 4 for the square lat-
tice with nc=4. Since we are here concerned with the transi-
tion from metallic to insulating behavior, we show the spec-
tra obtained from the interacting cluster Green’s function,
Aij���=−�1 /��Im Gij

cl��+ i��, Eq. �22�, with �=0.1. These
spectra can be evaluated without requiring analytic continu-
ation from Matsubara to real frequencies. Using the transfor-
mations indicated in Eqs. �9� and �13�, the cluster molecular-
orbital densities are given by A1=A11+2A12+A14, A2=A3
=A11−A14, and A4=A11−2A12+A14. The total density A���
=�mAm��� /4 coincides with the on-site distribution A11���,
which also represents the density corresponding to M /2
= �� /2,� /2� �see below�. To our knowledge, this orbital de-
composition has not been addressed before. Clearly, all or-
bitals contribute to the spectral weight at EF in the metallic
phase, as well as to the lower and upper Hubbard bands in
the insulating phase. The spectral distributions shown in the
upper panel are consistent with those by Kyung et al.37 and
Zhang and Imada41 within ED/DMFT at T=0. The spectra
reveal a characteristic four-peak structure, consisting of low-
frequency peaks limiting the pseudogap due to short-range
correlations and high-frequency peaks associated with the
Hubbard bands.18,19,37 The small peak at EF in the metallic
phase at U=5 appears only at finite T. It vanishes at T=0. At
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such low frequencies, however, ED finite-size effects cannot
be ruled out.

Similar results are obtained for the square lattice in the
two-site cluster model. Results for the triangular lattice with
nc=3 are shown in Fig. 5. According to Eqs. �8� and �12� the
cluster molecular-orbital densities are given by A1=A11
+2A12 and A2=A3=A11−A12. As for the square lattice, the
Mott gap opens simultaneously in all orbitals at about the
same critical U, and all orbitals contribute to the lower and
upper Hubbard bands. While the metallic phase of the un-
frustrated square lattice close to the transition exhibits a

pseudogap due to short-range antiferromagnetic
correlations,37,41,44,46 this phenomenon is absent in the trian-
gular lattice as a result of geometrical frustration.39

To illustrate the first-order nature of the metal-insulator
transition we show in the left panel of Fig. 6 the spectral
weight of the nc=3 cluster orbitals at EF=0 as a function of
U. The right panel shows the average double occupancy
docc=�m�nm↑nm↓� /3. Both quantities exhibit hysteresis for in-
creasing and decreasing U, indicating the coexistence of me-
tallic and insulating solutions. The complete T /U phase dia-
gram will be published elsewhere. The phase diagram for the
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isotropic square lattice with nc=4 was recently mapped out
in detail by Park et al.44

The cluster molecular-orbital components of the self-
energy and Green’s function may be used to derive an ap-
proximate expression for the momentum variation of the
lattice self-energy and Green’s function in the original Bril-
louin Zone:32

��k�,i�n� �
1

nc
�
ij

eik�·�R� i−R� j��ij�i�n� , �26�

where R� i are the cluster site positions and �ij are the site
components of the self-energy. An analogous expression
holds for the lattice Green’s function. For the clusters dis-
cussed above this superposition implies that the Mott gap
opens uniformly along the Fermi surface since all orbitals
undergo a common transition.

Writing the site elements in terms of the orbital compo-
nents, one has for nc=4: ��� , i�n�=�1�i�n�, ��X , i�n�
=�2�i�n�=�3�i�n�, and ��M , i�n�=�4�i�n�. In agreement
with results of previous authors32,35,41,44,46,47,49 we find the
behavior of ��� , i�n� and ��M , i�n� near the Mott transition
to differ qualitatively from that of ��X , i�n� �not shown
here�: Whereas Im ��X , i�n� exhibits ��n variation at low
frequencies in the metallic phase and �1 /�n variation in the
insulating phase �the real part vanishes because of particle
hole symmetry �see Fig. 1��, Im ��� , i�n� and Im ��M , i�n�
remain ��n in both phases, but their real parts increase rap-
idly across the transition.

Although this behavior might suggest a Mott transition for
the X cluster orbitals combined with a band-filling or band-
emptying mechanism for the � and M orbitals, the orbital
occupancies �Fig. 3� and spectral distributions �Fig. 4� dem-
onstrate this not to be the case. Moreover, for the crucial
question of whether or not the Mott gap opens simulta-
neously across the Fermi surface, it is important to compare
the self-energy at X with its behavior at M /2, where the
electron band also crosses EF. According to Eq. �26�,
��M /2, i�n� coincides with the diagonal on-site element of
the cluster self-energy, which is identical with the local lat-
tice self-energy. Thus,

��M/2,i�n� =
1

4
����,i�n� + ��M,i�n� + 2��X,i�n�� .

�27�

The real parts of the first terms on the right-hand side cancel
since the corresponding density-of-states components are
mirrors of each other �see Fig. 1�. Thus, ��M /2, i�n� and
��X , i�n� are purely imaginary because of particle-hole sym-
metry. The above relation demonstrates that Coulomb corre-
lations at the cold spot M /2 are essentially driven by those at
the hot spot X. In fact, the magnitude of the self-energy at
M /2 is a factor of 2 smaller than the singular term at X with
weak additional, nonsingular contributions associated with �
and M.

Along the Fermi surface between X and M /2 �i.e., for
kx+ky =��, the self-energy is given by

��k�,i�n� = cos2�kx���X,i�n� + sin2�kx���M/2,i�n� .

�28�

This function is imaginary, i.e., there are no band shifts due
to a finite real part of the self-energy. Thus, within the four-
site cluster DMFT, the opening of the Mott gap on the entire
Fermi surface is determined solely by the singularity of
Im ��X , i�n�.

The above analysis leads to a surprisingly simple picture
for the momentum variation in correlations along the Fermi
surface. It consists of two sinusoidal contributions: The sin-
gular X term oscillates with amplitude 1 at X and 1/2 at M /2,
and the nonsingular term due to the � ,M orbitals oscillates
with amplitude 1 at M /2 and zero at X.

This is illustrated in Fig. 7, which shows the lattice self-
energy and Green’s function at X and M /2 below and above
the Mott transition. In the metallic phase, the self-energy at X
is seen to be larger than the one at M /2. Thus, quasiparticle
lifetimes decrease between M /2 and X. Nevertheless, the
singular behavior at M /2 is governed by the one at X. Ac-
cordingly, the Green’s function at X and M /2 displays a
change from metallic to insulating behavior at the same Cou-
lomb energy.
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To understand the strong coupling between different sec-
tions of the Brillouin Zone it is important to recall that, in the
diagonal cluster molecular-orbital basis, the single-particle
part of the lattice Hamiltonian appearing in Eq. �2� is not
diagonal. Thus, the orbital component of the lattice Green’s
function Gm�i�n� is influenced not only by the corresponding
self-energy �m�i�n�, but by the other orbital elements as
well. This point becomes clear if we compare Gm�i�n� with
the approximation

Gm�i�n� � � d�

m���

i�n + � − � − �m�i�n�
. �29�

Figure 8 shows that in the metallic region at U=5 there is
little difference with regard to the actual Gm�i�n�. Also, at
U=6 the key components responsible for the metal-insulator
transition, namely, G2,3�i�n� corresponding to X= �� ,0�, are
well represented by this approximation. The � ,M compo-
nents, G1,4�i�n�, however, do not reveal insulating behavior
since at small �n the imaginary parts do not extrapolate to
zero. This demonstrates that the Mott gaps seen in A1,4��� in
Figs. 4 and 5 are not caused by the rapidly varying real parts
of �1,4�i�n�. Instead, the gaps at � and M are driven by the
singular behavior of Im �2,3�i�n�, which contributes to
A1,4��� via the nondiagonal elements of t�k��.58

If the approximate components obtained via Eq. �29� were
used to generate the spectral distributions Am���, it is clear
that only A2,3��� corresponding to X would exhibit the Mott
transition, while A1,4��� would retain considerable metallic-
ity. This implies that the physics at the cold spot M /2 is
incorrectly represented via Eq. �29�, suggesting that the gap
at M /2 does not open at the same U as at X. Instead, as
argued above, the metal-insulator transition at M /2 is caused
by the same self-energy terms as at X, i.e., the Mott gap
opens uniformly.

As pointed out earlier, in the molecular-orbital basis the
Coulomb matrix has a large number of nonzero elements.
Thus, in this basis there is not only single-particle hybridiza-
tion arising from t�k��, but also strong interorbital Coulomb
repulsion. Nevertheless, the above analysis reveals that, al-
though these Coulomb interaction terms are properly taken
into account, the spectral distributions at �, M, and M /2 do
not exhibit a Mott gap unless the nondiagonal terms of t�k�� in
the orbital basis are included. It is therefore the single-
particle part of the Hamiltonian that provides the correct con-
nection between the self-energy components and thereby
generates the true momentum variation in the spectral distri-
bution of the single band.

Because of the strong coupling between orbitals, the no-
tion that some of these orbitals undergo a Mott transition
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while others do not does not appear appropriate. As shown
consistently by all orbital-resolved spectra in the present
multisite ED/DMFT study, there is a single Mott transition
common to all cluster molecular orbitals, implying a simul-
taneous opening of the Mott gap across the entire Fermi sur-
face. Nevertheless, in agreement with previous authors, we
find pronounced momentum variation in quasiparticle prop-
erties close to the Mott transition.

In view of the approximate nature of the momentum
variation in the lattice self-energy and Green’s function de-
rived within the CDMFT, it would be very interesting to
compare the above results with analogous ones obtained
within the DCA,20,36 in particular, since the cluster
molecular-orbital components of the density of states, as
stated above, differ appreciably between these two cluster
DMFT schemes.59 This comparison will be addressed in a
future publication.

The scenario discussed in this section differs strikingly
from the one found for several multiorbital materials, which
have been studied previously by various groups. For the sake
of comparison we review some of these systems in the fol-
lowing section.

IV. COMPARISON WITH MULTIORBITAL SYSTEMS

During the recent years single-site multiorbital DMFT has
been used extensively to investigate the metal insulator tran-
sition of a variety of materials.1 Here, we briefly discuss
some of these systems, which are regarded as typical Mott
insulators, and which all exhibit characteristic changes of the
electronic structure as the metallic phase is replaced by the
insulator at large Coulomb energies.

Figure 9 shows the correlation-driven enhancement of or-
bital polarization for LaTiO3, V2O3, and Ca2RuO4. Because
of the orthorhombic structure of LaTiO3, LDA calculations
reveal that the ag subbands of the t2g sector are slightly more
occupied than the two eg� components.3 Local Coulomb in-
teractions enhance this t2g crystal-field splitting so that at the
Mott transition close to U=5 eV the eg� bands become nearly
empty and the ag band half filled.3,4 In the case of V2O3, the
corundum lattice structure ensures that the doubly-
degenerate eg� bands have slightly larger binding energy than
the ag bands.5 With increasing Coulomb interaction this
crystal-field splitting is strongly enhanced until in the range
U�5. . .6 eV, the ag bands are pushed above the Fermi
level, and the eg� bands become half filled.5,6,56 Finally, in the
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case of CaxSr2−xRuO4, Sr substitution via the smaller Ca ions
gives rise to an enlarged crystal-field splitting between dxy-
and dxz,yz-like subbands.60 Coulomb correlations increase this
splitting until in the Mott phase the dxy bands are fully occu-
pied and the half-filled dxz,yz bands are split into lower and
upper Hubbard bands.8

Schematically, the uncorrelated densities of states of these
transition-metal oxides and the spectra derived within single-
site multiorbital DMFT for realistic Coulomb energies are
shown in Fig. 10. Note that in the metallic phase, both orbital
symmetries contribute to the spectral weight at the Fermi
level. In the Mott phase, the gap involves transitions between
states of opposite symmetry character.

Despite the different subband occupancies of these mate-
rials, they exhibit a similar correlation-driven enhancement
of orbital polarization.61 By pushing some subbands above or
below the Fermi level, the effective degeneracy is reduced
from three to two or one. The Mott transition therefore oc-
curs at lower critical Coulomb energy than in a cubic envi-
ronment with equivalent subbands.

According to Fig. 1, the cluster molecular-orbital densities
of the single-band Hubbard model in a multisite picture also
exhibit a substantial splitting relative to the total band width.
Nevertheless, Coulomb correlations in these cases only lead
to moderate charge transfer between these cluster orbitals, as
demonstrated by the results given in Fig. 2. The main physi-
cal reason for this qualitative difference with respect to the
multiorbital materials is the strong single-particle hybridiza-
tion among orbitals so that any tendency toward orbital-
selective Mott transitions is suppressed. For the same reason,
partial band filling or emptying, with a Mott transition in the
remaining subset of bands, as found in several multiorbital
materials, is also absent.

A certain amount of interorbital hybridization exists also
in multiorbital systems since the single-electron Hamiltonian
in the orbital basis is not diagonal throughout the Brillouin

Zone. This residual coupling, however, is much weaker than
in the single-band multisite system so that Coulomb correla-
tions can indeed lead to nearly complete orbital polarization.
This is supported by the DMFT results for LaTiO3 and V2O3,
which have been studied both by evaluating the lattice
Green’s function via Eq. �2� �see Refs. 3 and 6� and via the
approximate version, Eq. �29� �see Refs. 4, 5, and 56�. In
these systems both formulations give very similar results, in
particular, both confirm the scenario of strong orbital polar-
ization.

V. CONCLUSION

Cellular DMFT combined with finite-temperature exact
diagonalization has been used to investigate the influence of
short-range correlations on the Mott transition in the single-
band Hubbard model. Both square and triangular lattices at
half filling were studied. A mixed basis consisting of cluster
sites and bath molecular orbitals was shown to provide an
efficient method for the evaluation of the cluster self-
energies and Green’s functions. Since in the cluster
molecular-orbital representation these quantities become di-
agonal, an intriguing analogy exists between Coulomb cor-
relations in these multisite single-band systems and several
multiorbital materials, which were studied previously within
single-site DMFT.

In remarkable contrast to LaTiO3, V2O3, and Ca2RuO4,
which exhibit pronounced orbital polarization at the Mott
transition, the single-band systems show very little
correlation-driven enhancement of orbital polarization. Thus,
all cluster molecular orbitals take part in the metal-insulator
transition. Moreover, the transition occurs at the same critical
U for all cluster orbitals. Since an approximate momentum
variation in the lattice self-energy and Green’s function can
be constructed from a superposition of these molecular-
orbital components, this finding yields the important result
that the Mott gap opens simultaneously across the entire
Fermi surface. Thus, for both square and triangular lattices at
half filling, there is no orbital-selective Mott transition,
where certain sections of the Brillouin Zone would open a
gap at lower Coulomb energy than other parts. Moreover,
there is no evidence for the combination of subband filling
and Mott transition in other subbands that is characteristic of
the multiorbital materials mentioned above. It would be of
great interest to investigate whether these findings also hold
at a finer momentum resolution, which would require cluster
sizes larger than nc=4.
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